

2014 Imaging Beauty Contest

J.D. Monnier (U. Michigan) & J.-P. Berger (ESO)

Participants (leads):

Christian Hummel, Karl-Heinz Hofmann, John Young, Joel Sanchez, Rainer Kohler, Ferreol Soulez, Jacques Kluska, Gilles Duvert, Stefan Kraus, Brian Kloppenborg

VLTI imaging contest:

- Motivation:
 - OPC is often not "convinced" by the aperture synthesis added value, hard to get "imaging" time;
 - Advertise the imaging capabilities of VLTI outside of interferometric community
 - Explore the added value of image reconstruction in a real scientific case
 - Publish the results

VLTI imaging contest:

- Process:
 - Authorisation request to ESO's Director for Science & Paranal Director to use freed technical time for this science.
 - Call for target suggestions to ~20 members of community
 - Criteria 1: well resolved;

• Criteria 2: scientific interest;

- Selection: R Car (Mira) VY CMA (Supergiant)
- Call for interest in collaboration: 44 answers including non interferometrists (the call percolated outside the community)

VLTI imaging contest:

Observations

- All 3 ATs configuration
 - Excellent uv coverage
 - Well dimensioned objects (R Car & VY CMA)
 - Good data quality (PIONIER)
- Observers: R. Grellman, A. Mueller, S. Renganswany
- Data reduction: J.B Lebouquin

- Date: 2014: Jan-22 Feb 02
 - A1-J3-K0-G1
 - H0-I1-D0-G1
 - A1-C1-D0-B2
- R Car: NV2 ~ 1000
- sigV2 ~ 2% , sig CP~ 1 deg
- VY CMA: NV2 ~ 300
- Data reduction: pndrs (lebouquin et al. 2011)

The two objects

Tuthill aperture masking

VY CMa Fourier Coverage

VY CMa Visibilities

VY CMa Closure Phases

The two objects

- R Car
 - Mira Variable M5-8
 - Strong water bands in near infrared

R Car Fourier Coverage

R Car Visibilities

R Car Closure phases

/ 2014 Imaging Beauty Contest –

Astronomy

Submitter	Algorithm	Prior?		Wavelength Regularization	
		VY CMa	R Car	VY CMa	R Car
Hummel	PEARL/CLEAN	No	No	Gray	Gray
Hofmann	IRBis	No	No	Separate	separate
Young	BSMEM	gaussian +gaussian	LDD +gaussian	Separate	Separate
Sanchez	BSMEM	Compact+ 2 gaussians	Compact+ 2 gaussians	Gray	Gray
Kohler	MIRA	No	No	Separate	Separate
Soulez	MIRA3D	No	No	Yes	Yes
Kluska	MIRA-SPARCO	Gray image	Gray image	Via prior	Via prior
Duvert	Wisard	No	No	No	No
Kraus	SQUEEZE/MACIM	No	No	No	No
Kloppenborg	SQUEEZE-poly	No	No	Yes	Yes

VY CMa Median Images VY CMA 1.67mu Median Image VY CMA 1.61mu Median Image VY CMA 1.73mu Median Image 20 10 0 -10 -20 -20 20 20 20 10 0 -10 10 0 -10 -20 10 0 -10 -20 Milliarcseconds

- Dust shell is over-resolved
- Elongated photosphere
- Two bright spots on the eastern limb
- Not much chromaticity
- Approximately the same size as K band (Wittkowski et al.)

R Car

- Prominent circumstellar emission shells seen mainly in edge channels
- Two spots (or one elongated spot) near center

nomy						
Sub	omitter	r VY CMa		R Car		Score
		2 spots	Placement	Water Shells	2 spots	
Hur	mmel					
Hof	fmann					
You	Ing					
San	ichez					
Koh	nler					
Sou	ılez					
Klus	ska					
Duv	vert					
Kra	us					
Klo	ppenborg					

Astronómy

Submitter	VY CMa		R Car		Score
	2 spots	Placement	Water Shells	2 spots	
Hummel		$\overline{\otimes}$	$\overline{\boldsymbol{\otimes}}$	$\overline{\mathbf{i}}$	-2
Hofmann	\odot			\odot	+2
Young	\odot	\bigcirc	\odot		+3
Sanchez			\odot	\odot	+4
Kohler		\odot	\odot	$\overline{\mathbf{O}}$	+1
Soulez	\odot		\odot		+3
Kluska	$\overline{\mathbf{i}}$	\odot	$\overline{\boldsymbol{\otimes}}$		-1
Duvert	\odot			$\overline{\mathfrak{S}}$	0
Kraus	\odot		$\overline{\mathfrak{S}}$	\odot	+1
Kloppenborg	\odot				+1

Astronomy

Comparison

Possible next steps

- VY CMa
 - Scale visibility in the channels to account wavelength dependence of dust emission
 - Perhaps suppress short baselines
 - Make gray image
- R Car
 - Hybrid model star+spots are gray but envelope has wavelength dependence

Conclusions

- Key features were tentatively identified via consensus
- All methods recovered key features
 - Variety of assumptions make comparisons difficult
 - More differences between images than in the past when using simulated data
- Congratulations to Joel Sanchez from IAA-CSIC/Spain using BSMEM for recovering all the key image features!

Thanks to all the Contest Participants!